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Abstract
The transition from classical physics to quantum mechanics has been mysterious. 
Here, we mathematically derive the space-independent von Neumann equation for 
electron spin from the classical Bloch equation. Subsequently, the space-independ-
ent Schrödinger–Pauli equation is derived in both the quantum mechanical and 
recently developed co-quantum dynamic frameworks.

Keywords Bloch equation · von Neumann equation · Liouville–von Neumann 
equation · Schrödinger–Pauli equation · Schrödinger equation · Landau–Lifshitz–
Gilbert equation · Electron spin

1 Introduction

The Schrödinger equation, as a postulate, is a corner stone in quantum mechan-
ics. The transition from classical physics to quantum mechanics, however, remains 
a mystery. Various approaches to obtaining the time-dependent Schrödinger equa-
tion have been investigated [1–6]. Recently, Schleich et al. generalized the Hamil-
ton–Jacobi equation to reach the Schrödinger equation [7]. Most notably, Feynman 
used the path integral to attain the same equation [8].

We investigate the transition from classical physics to the space-independent 
Schrödinger–Pauli equation for electron spin. In classical electrodynamics, the 
motion of the magnetic dipole moment of an electron is governed by the Bloch 
equation. Majorana stated that both the classical and the quantum–mechanical treat-
ments on spin flip of atoms moving in a magnetic quadrupole field require inte-
gration of the same differential equations [9, 10]. It is known that the space-inde-
pendent Schrödinger–Pauli equation or von Neumann equation (also known as the 
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Liouville–von Neumann equation) for a unitary two-level system can be converted 
to the Bloch equation or its analog [11–13]. However, the inverse conversion that 
would complete the two-way transitions has not been found in the literature.

Here, the classical Bloch equation for electron spin is mathematically converted 
to the space-independent von Neumann equation for a pure state of a two-level spin 
system. Subsequently, the space-independent Schrödinger–Pauli equation is derived 
in both frameworks of quantum mechanics and recently developed co-quantum 
dynamics (CQD, see Appendix). Therefore, the inverse conversion is shown, and 
the two-way transitions for a pure state of electron spin between the classical Bloch 
equation and the space-independent Schrödinger–Pauli equation are established.

2  Derivation from Bloch Equation to Space‑Independent von 
Neumann Equation

We start with the classical Bloch equation for an electron in a magnetic field,

where �⃗𝜇 denotes the magnetic dipole moment of the electron,� the gyromagnetic 
ratio, t time, and �⃗B the magnetic flux density. Substitution of �⃗𝜇 = ℏ

2
𝛾 �𝜇  yields

Here, ℏ denotes the reduced Planck constant, ℏ
2
 the spin angular momentum of the 

electron, and caret a unit vector. The unit vector is expressed as

where � and � denote the polar and azimuthal angles.
We now resort to the Pauli vector,

as a mathematical tool, which transforms real-space (x, y, z) vectors and operations 
using complex numbers. The Pauli matrices are given by

Note that the Pauli matrices, related to quaternions, are applied beyond quantum 
mechanics.

Multiplying both sides of the Bloch equation (Eq. 2) by �⃗𝜎 from the right yields

(1)
1

𝛾

d

dt
�⃗𝜇 = �⃗𝜇 × �⃗B,

(2)
ℏ

2

d

dt
�𝜇 =

ℏ

2
𝛾 �𝜇 × �⃗B.

(3)�̂ =

⎛⎜⎜⎝

sin � cos�

sin � sin�

cos �

⎞⎟⎟⎠
,

(4)�⃗𝜎 = 𝜎x�x + 𝜎y�y + 𝜎z�z,

(5)�x =

(
0 1

1 0

)
, �y =

(
0 −i

i 0

)
, �z =

(
1 0

0 −1

)
, �0 =

(
1 0

0 1

)
.
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Merging the factors on the left side and splitting the right side produces

Applying the following mathematical identity—known as the Pauli vector iden-
tity—for any two vectors �⃗a and �⃗b,

we obtain

and

Subtraction of the above two equations produces

Substituting into Eq. 7 yields

We define

Substituting Eqs. 3–5 into Eq. 13 produces

which reproduces the familiar quantum mechanical density matrix for a pure state 
of electron spin. One may express the density matrix using the state vector in outer-
product form as follows:

(6)
ℏ

2

(
d

dt
�𝜇
)
⋅ �⃗𝜎 =

ℏ

2
𝛾
(
�𝜇 × �⃗B

)
⋅ ��⃗𝜎.

(7)
ℏ

2

d

dt

(
�𝜇 ⋅ �⃗𝜎

)
=

ℏ

2
𝛾
[
1

2

(
�𝜇 × �⃗B

)
⋅ �⃗𝜎 −

1

2

(
�⃗B × �𝜇

)
⋅ �⃗𝜎

]
.

(8)
(
�⃗a ⋅ �⃗𝜎

)(
�⃗b ⋅ �⃗𝜎

)
=
(
�⃗a ⋅ �⃗b

)
𝜎0 + i

(
�⃗a × �⃗b

)
⋅ ��⃗𝜎,

(9)
(
�𝜇 ⋅ �⃗𝜎

)(
�⃗B ⋅ �⃗𝜎

)
=
(
�𝜇 ⋅

�⃗B
)
𝜎0 + i

(
�𝜇 × �⃗B

)
⋅ �⃗𝜎

(10)
(
�⃗B ⋅ �⃗𝜎

)(
�𝜇 ⋅ �⃗𝜎

)
=
(
�⃗B ⋅ �𝜇

)
𝜎0 + i

(
�⃗B × �𝜇

)
⋅ �⃗𝜎.

(11)
(
�𝜇 ⋅ �⃗𝜎

)(
�⃗B ⋅ �⃗𝜎

)
−
(
�⃗B ⋅ �⃗𝜎

)(
�𝜇 ⋅ �⃗𝜎

)
= i

[(
�𝜇 × �⃗B

)
⋅ �⃗𝜎 −

(
�⃗B × �𝜇

)
⋅ �⃗𝜎

]
.

(12)iℏ
d

dt

(
1

2
�𝜇 ⋅ �⃗𝜎

)
=

1

2
ℏ𝛾

[(
1

2
�𝜇 ⋅ �⃗𝜎

)(
�⃗B ⋅ �⃗𝜎

)
−
(
�⃗B ⋅ �⃗𝜎

)(
1

2
�𝜇 ⋅ �⃗𝜎

)]
.

(13)𝜌 =
1

2

(
�𝜇 ⋅ �⃗𝜎 + 𝜎0

)
.

(14)� =

(
cos2

�

2
cos

�

2
sin

�

2
exp(−i�)

cos
�

2
sin

�

2
exp(i�) sin2

�

2

)
,

𝜌 =

(
cos

𝜃

2

sin
𝜃

2
exp(i𝜙)

)
⊗

(
cos

𝜃

2

sin
𝜃

2
exp(i𝜙)

)
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We next define

which reproduces the familiar quantum mechanical Hamiltonian for electron spin. 
Note that 1

2
ℏ𝛾 is the magnitude of the magnetic dipole moment.

Substituting Eqs. 13 and 16 into Eq. 12 yields

Eliminating the identity matrix �0 (Eq. 5) produces the von Neumann equation,

Therefore, the classical Bloch equation is mathematically converted to the space-
independent von Neumann equation for a pure state of electron spin.

3  Quantum Mechanical Derivation from Von Neumann Equation 
to Space‑Independent Schrödinger–Pauli Equation

While the Schrödinger equation naturally evolves to the von Neumann equation 
[14], the inverse process holds for a pure state [15]. The quantum mechanical den-
sity matrix for a pure state is given by

The ket and bra vectors [14] are given by

and

Substituting Eq. 19 into 18 yields

(15)=

(
cos

�

2

sin
�

2
exp(i�)

)(
cos

�

2
sin

�

2
exp(−i�)

)
.

(16)H = −
1

2
ℏ𝛾 �⃗B ⋅ �⃗𝜎,

(17)iℏ
d

dt

(
𝜌 −

1

2
𝜎0

)
= H

(
𝜌 −

1

2
𝜎0

)
−
(
𝜌 −

1

2
𝜎0

)
H.

(18)iℏ
d

dt
𝜌 = H𝜌 − 𝜌H = [H, 𝜌].

(19)� = ���̂ ⟩⟨�̂��.

(20)���̂ ⟩ =
�

cos
�

2

sin
�

2
exp(i�)

�

(21)⟨�̂�� =
�
cos

�

2
sin

�

2
exp(−i�)

�
.

(22)iℏ
d

dt

����𝜇 ⟩⟨�𝜇��
�
=
�
H, ���𝜇 ⟩ ⟨�𝜇��

�
.
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Expansion produces

Combining terms results in

Multiplying both sides by ���̂ ⟩ from the right and using ⟨�̂��̂⟩ = 1 yields

Because the bra and ket vectors [14] originate from independent realizations, pre-
sumably implied in the omitted derivations by Wieser [15], both sides must vanish 
for the equation to hold. Therefore, we reach

which is the space-independent Schrödinger–Pauli equation.
Conversely, we now assume that the bra and ket vectors originate from identical 

realizations and examine the consequence. Differentiating ⟨�̂��̂⟩ = 1 yields

Substituting into Eq. 25 and using Eq. 19 produces

If the matrix, 1 − � , is full rank, multiplying both sides from the left by the inverse 
matrix uniquely yields the space-independent Schrödinger–Pauli equation. However, 
from Eq. 14, we have the determinant, |1 − �| = 0 ; thus, the matrix is singular. Con-
sequently, the space-independent Schrödinger–Pauli equation can be reached as only 
a sufficient but not necessary condition. To reach the Schrödinger–Pauli equation 
as a sufficient and necessary condition, we assume that the bra and ket vectors [14] 
originate from independent realizations.

4  CQD Derivation from Von Neumann Equation 
to Space‑Independent Schrödinger–Pauli Equation

In Sect.  3, the independent realizations are implicit in the bra and ket vectors 
(Eqs.  20 and 21). On the basis of explicit independent realizations in CQD (see 
Appendix), we repeat the derivation. Henceforth, subscripted e and n denote the 
electron and nucleus, respectively, in the same atom.

(23)
�
iℏ

d

dt
���𝜇 ⟩

�
⟨�𝜇�� + ���𝜇 ⟩

�
iℏ

d

dt
⟨�𝜇��

�
=
�
H���𝜇 ⟩

�⟨�𝜇�� − ���𝜇 ⟩
�⟨�𝜇��H

�
.

(24)
�
iℏ

d

dt
���𝜇 ⟩ − H���𝜇 ⟩

�
⟨�𝜇�� = −���𝜇 ⟩

�
iℏ

d

dt
⟨�𝜇�� + ⟨�𝜇��H

�
.

(25)
�
iℏ

d

dt
���𝜇 ⟩ − H���𝜇 ⟩

�
= −���𝜇 ⟩

�
iℏ

d

dt
⟨�𝜇�� + ⟨�𝜇��H

����𝜇 ⟩.

(26)iℏ
d

dt
���𝜇 ⟩ = H���𝜇 ⟩,

(27)
�
d

dt
⟨�̂��

����̂ ⟩ + ⟨�̂��
�
d

dt
���̂ ⟩

�
= 0.

(28)(1 − 𝜌)
�
iℏ

d

dt
���𝜇 ⟩ − H���𝜇 ⟩

�
= 0.
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The CQD pre-collapse state function is denoted by ��̂e©�̂n⟩ , where the co-
quantum, �̂n , is prefixed with © for clarity. ��̂e©�̂n⟩ represents the principal quan-
tum, �̂e , accompanied with �̂n . For a given �̂e , the CQD prediction expressions for 
two independent realizations are written in dual spaces as follows:

and

Numbers in subscripts denote independent realizations. Each binary coefficient 
represents either one or zero according to the CQD branching condition.

As shown in Sect. 2, the von Neumann equation was derived without ensemble 
averaging. Thus, we start with the following pre-averaging density operator:

To illustrate the parallelism with Sect.  3, we keep the original wording as 
much as possible below.

The von Neumann equation becomes

where H is assumed to be shared by the two realizations. Expansion yields

Rearranging terms produces

Multiplying both sides by ��̂e©�̂n2⟩ from the right gives

From Eq. 30, we have

Therefore, we reach

(29)��̂e©�̂n1⟩ = C1+

�
�̂e, �̂n1

��+z⟩ + C1−

�
�̂e, �̂n1

�
exp(+i�e)�−z⟩

(30)⟨�̂e©�̂n2� = C2+

�
�̂e, �̂n2

�⟨+z� + C2−

�
�̂e, �̂n2

�
exp

�
−i�e

�⟨−z�.

(31)�0 = ��̂e©�̂n1⟩⟨�̂e©�̂n2�.

(32)iℏ
d

dt

���𝜇e©�𝜇n1⟩⟨�𝜇e©�𝜇n2�
�
=
�
H, ��𝜇e©�𝜇n1⟩⟨�𝜇e©�𝜇n2�

�
,

(33)
iℏ
�
d

dt
��𝜇e©�𝜇n1⟩

�
⟨�𝜇e©�𝜇n2� + ��𝜇e©�𝜇n1⟩iℏ d

dt
⟨�𝜇e©�𝜇n2�

=
�
H��𝜇e©�𝜇n1⟩

�⟨�𝜇e©�𝜇n2� − ��𝜇e©�𝜇n1⟩
�⟨�𝜇e©�𝜇n2�H

�
.

(34)

��
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩

�
⟨�𝜇e©�𝜇n2� = ��𝜇e©�𝜇n1⟩

�
−iℏ

d

dt
⟨�𝜇e©�𝜇n2� − ⟨�𝜇e©�𝜇n2�H

�
.

(35)

��
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩

�
⟨�𝜇e©�𝜇n2��𝜇e©�𝜇n2⟩ = ��𝜇e©�𝜇n1⟩

�
−iℏ

d

dt
⟨�𝜇e©�𝜇n2� − ⟨�𝜇e©�𝜇n2�H

�
��𝜇e©�𝜇n2⟩.

(36)⟨�̂e©�̂n2��̂e©�̂n2⟩ = C
2

2+
⟨+z�+z⟩ + C

2

2−
⟨−z�−z⟩ = C

2

2+
+ C

2

2−
= 1.
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which can be written alternatively as

Because this equation holds for any two independent realizations, both sides must 
vanish, yielding

and

Ensemble averaging either equation over all co-quantum realizations produces 
the space-independent Schrödinger–Pauli equation,

Conversely, we now assume that the bra and ket vectors originate from identical 
realizations and examine the consequence. Replacing each subscripted 2 with 1 in 
Eq. 37 yields

Replacing each subscripted 2 with 1 in Eq. 36 gives

Differentiation yields

Substitution into Eq. 42 gives

Replacing each subscripted 2 with 1 in Eq. 31 and substituting it into the above 
equation produces

(37)

�
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩ = ��𝜇e©�𝜇n1⟩

�
−iℏ

d

dt
⟨�𝜇e©�𝜇n2� − ⟨�𝜇e©�𝜇n2�H

�
��𝜇e©�𝜇n2⟩,

(38)
�
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩ = ��𝜇e©�𝜇n1⟩

��
iℏ

d

dt
− H

�
��𝜇e©�𝜇n2⟩

�†
��𝜇e©�𝜇n2⟩.

(39)
�
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩ = 0

(40)
�
iℏ

d

dt
− H

�
��𝜇e©�𝜇n2⟩ = 0.

(41)
�
iℏ

d

dt
− H

�
��𝜇e⟩ = 0.

(42)

�
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩ = ��𝜇e©�𝜇n1⟩

�
−iℏ

d

dt
⟨�𝜇e©�𝜇n1� − ⟨�𝜇e©�𝜇n1�H

�
��𝜇e©�𝜇n1⟩.

(43)⟨�̂e©�̂n1��̂e©�̂n1⟩ = 1.

(44)
�
d

dt
⟨�̂e©�̂n1

��
����̂e©�̂n1 ⟩ + ⟨�̂e©�̂n1

��
�
d

dt
���̂e©�̂n1 ⟩

�
= 0.

(45)
�
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩ = ��𝜇e©�𝜇n1⟩⟨�𝜇e©�𝜇n1

��
�
iℏ

d

dt
− H

����𝜇e©�𝜇n1 ⟩.

(46)
�
1 − 𝜌0

��
iℏ

d

dt
− H

�
��𝜇e©�𝜇n1⟩ = 0.
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If the matrix, 1 − �0 , is full rank, multiplying both sides from the left by the 
inverse matrix uniquely yields the space-independent Schrödinger–Pauli equa-
tion. However, from Eq.  14, which holds for �0 as well, we have the determi-
nant, ||1 − �0

|| = 0 ; thus, the matrix is singular. Therefore, the space-independent 
Schrödinger–Pauli equation can be reached as only a sufficient but not necessary 
condition. To reach the Schrödinger–Pauli equation as a sufficient and necessary 
condition, we assume that the bra and ket vectors [14] originate from independent 
realizations, which is explicit here.

5  Discussion and Summary

Quantum mechanics, celebrated for its countless triumphs, still poses open questions 
as discussed insightfully in recent monographs [16–19]. Various thought experi-
ments have been proposed [20–22]. The transition from classical physics to quantum 
mechanics remains an open question. In the Copenhagen interpretation, an electron 
spin is considered to be simultaneously in both eigenstates, and its wavefunction 
collapses statistically upon measurement to either eigenstate [12]. The collapse of 
wavefunction is stated separately as a measurement postulate because it cannot be 
modeled by the original Schrödinger equation [17].

We now extend the Bloch equation to the Landau–Lifshitz–Gilbert equation [23],

Here, the dimensionless ki is called the induction factor, which is used in CQD 
to explain the collapse of wavefunction (see Appendix). Although this equation was 
originally intended for condensed matter, the underlying physical mechanism for the 
added term is compatible with CQD. In fact, the author had developed CQD before 
realizing its connection with the Landau–Lifshitz–Gilbert equation. Setting ki = 0 
recovers the Bloch equation.

Following the same procedure shown in Sect.  2, the Landau–Lifshitz–Gilbert 
equation (Eq.  47) can be converted to the following nonlinear variant of the von 
Neumann equation:

One may compare CQD with the existing quantum mechanical theories for col-
lapse, e.g., the Ghirardi–Rimini–Weber model [24], continuous spontaneous locali-
zation model [25, 26], and the “Wavefunction Is the System Entity” (WISE) inter-
pretation [27].

Attempted conversion to a variant of the Schrödinger–Pauli equation has yielded 
only

(47)
d�𝜇

dt
= 𝛾 �𝜇 × �⃗B − ki�𝜇 ×

d�𝜇

dt
.

(48)iℏ
d

dt
𝜌 − ℏki

[
d𝜌

dt
, 𝜌

]
= [H, 𝜌].

(49)iℏ
d

dt
���𝜇 ⟩ − ℏki(1 − 𝜌)

d

dt
���𝜇 ⟩ = H���𝜇 ⟩,
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where � cannot be eliminated yet. This situation may be related to the fact that the 
collapse of wavefunction cannot be modeled by the original Schrödinger equation 
[17].

In summary, the classical Bloch equation has been shown to lead to the space-
independent von Neumann equation and the space-independent Schrödinger–Pauli 
equation, both for a pure state of electron spin. While it is known that the space-
independent Schrödinger–Pauli equation or von Neumann equation for a unitary 
two-level system can be converted to the Bloch equation or its analog [11–13], the 
inverse conversion for electron spin is shown here. It is first shown that the Bloch 
equation and the space-independent von Neumann equation are equivalent for a pure 
state of electron spin. Further conversion from the space-independent von Neumann 
equation to the space-independent Schrödinger–Pauli equation as a both sufficient 
and necessary condition is proven under the assumption of independent realizations 
of the bra and ket vectors, which is implicit in quantum mechanics but explicit in 
CQD. Without such an assumption, the space-independent Schrödinger–Pauli equa-
tion is only a sufficient but not necessary condition to either the classical Bloch 
equation or the space-independent von Neumann equation. The presented transition 
from classical physics to quantum mechanics can potentially lead to new insight into 
some of the open questions.

Appendix: Co‑quantum Dynamics

Because the manuscript on co-quantum dynamics (CQD) is being reviewed, an 
essential excerpt is provided below for completeness.

Abstract: In the classic multi-stage Stern–Gerlach experiment conducted by 
Frisch and Segrè, the Majorana (Landau–Zener) or Rabi formulae diverge afar from 
the experimental observation while the physical mechanism for electron-spin col-
lapse remains unidentified. Here, introducing the physical co-quantum concept pro-
vides a plausible physical mechanism and predicts the experimental observation in 
absolute units without fitting (i.e., no parameters adjusted) highly accurately. Fur-
ther, the co-quantum concept is corroborated by statistically reproducing exactly the 
wave function, density operator, and uncertainty relation for electron spin.

In typical Stern–Gerlach experiments, the dominant motion of �̂e is precession 
about the main field, and the secondary motion is collapse due to induction—with 
the following trend:

Here, Δ�e denotes the traversed azimuthal angle (i.e., the phase). As time evolves, 
�e approaches either 0 or � according to the following branching condition:

(50)tan
�e(t)

2
= tan

�e(0)

2
exp

[
−sgn

(
�n − �e

)
ki
||Δ�e(t)

||
]
.
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Therefore, �̂e collapses to either +z or −z.
The CQD pre-collapse state function is denoted by ��̂e©�̂n⟩ , where the co-quan-

tum, �̂n , is prefixed with © for clarity. ��̂e©�̂n⟩ represents �̂e accompanied with �̂n.
The CQD prediction expression for Stern–Gerlach experiments is written as

The equal sign functions as a right arrow ( → ) because the right side predicts 
the measurement outcome. A given �̂e collapses to either +ẑ  or −ẑ  according to 
the branching condition (Eq. 51). The two real and positive C coefficients take on 
mutually exclusive binary values while exp

(
i�e

)
 captures the phase information. 

If 𝜃n > 𝜃e , then C+ = 1 and C− = 0 ; if 𝜃n < 𝜃e , C+ = 0 and C− = 1 . In either case, 
C+ ⋅ C− = 0 and C+ + C− = 1.
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